Aquaporin-9 and urea transporter-A gene deletions affect urea transmembrane passage in murine hepatocytes.
نویسندگان
چکیده
In mammals, the majority of nitrogen from protein degradation is disposed of as urea. Several studies have partly characterized expression of urea transporters (UTs) in hepatocytes, where urea is produced. Nevertheless, the contribution of these proteins to hepatocyte urea permeability (P(urea)) and their role in liver physiology remains unknown. The purpose of this study was to biophysically examine hepatocyte urea transport. We hypothesized that the water, glycerol, and urea channel aquaporin-9 (AQP9) is involved in hepatocyte urea release. Stopped-flow light-scattering measurements determined that the urea channel inhibitors phloretin and dimethylurea reduced urea permeability of hepatocyte basolateral membranes by 70 and 40%, respectively. In basolateral membranes isolated from AQP9(-/-) and UT-A1/3(-/-) single-knockout and AQP9(-/-):UT-A1/3(-/-) double-knockout mice, P(urea) was decreased by 30, 40, and 76%, respectively, compared with AQP9(+/-):UT-A1/3(+/-) mice. However, expression analysis by RT-PCR did not identify known UT-A transcripts in liver. High-protein diet followed by 24-h fasting affected the concentrations of urea and ammonium ions in AQP9(-/-) mouse liver and plasma without generating an apparent tissue-to-plasma urea gradient. We conclude that AQP9 and unidentified UT-A urea channels constitute primary but redundant urea facilitators in murine hepatocytes.
منابع مشابه
Suppression subtractive hybridization analysis of low-protein diet- and vitamin D-induced gene expression from rat kidney inner medullary base.
Protein restriction and hypercalcemia result in a urinary concentrating defect in rats and humans. Previous tubular perfusion studies show that there is an increased active urea transport activity in the initial inner medullary (IM) collecting duct in low-protein diet (LPD) and vitamin D (Vit D) animal models. To investigate the possible mechanisms that cause the urinary concentrating defect an...
متن کاملProjection map of aquaporin-9 at 7 A resolution.
Aquaporin-9, an aquaglyceroporin present in diverse tissues, is unique among aquaporins because it is not only permeable to water, urea and glycerol, but also allows passage of larger uncharged solutes. Single particle analysis of negatively stained recombinant rat aquaporin-9 revealed a particle size characteristic of the tetrameric organization of all members of the aquaporin family. Reconsti...
متن کاملTRANSLATIONAL PHYSIOLOGY Suppression subtractive hybridization analysis of low-protein diet- and vitamin D-induced gene expression from rat kidney inner medullary base
Chen G, Yang Y, Fröhlich O, Klein JD, Sands JM. Suppression subtractive hybridization analysis of low-protein dietand vitamin D-induced gene expression from rat kidney inner medullary base. Physiol Genomics 41: 203–211, 2010. First published March 2, 2010; doi:10.1152/physiolgenomics.00129.2009.—Protein restriction and hypercalcemia result in a urinary concentrating defect in rats and humans. P...
متن کاملUpregulation of urea transporter UT-A2 and water channels AQP2 and AQP3 in mice lacking urea transporter UT-B.
The UT-B urea transporter is the major urea transporter in red blood cells and kidney descending vasa recta. Humans and mice that lack UT-B have a mild urine-concentrating defect. Whether deletion of UT-B altered the expression of other transporter proteins involved in urinary concentration was tested. Fluorescence-based real-time reverse transcription-PCR and Northern blot analysis showed upre...
متن کاملInteractions of Urea Transport and Synthesis in Hepatocytes of the Gulf Toadfish, Opsanus beta
Although urea transport is receiving increased attention in mammalian systems, little is known about urea transport in fish tissues. Recently, we identified a phloretin-sensitive urea efflux pathway in hepatocytes of gulf toadfish (Opsanus beta), a ureogenic teleost. The present study sought to further examine this transport system and its potential interrelation with metabolic urea production....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 303 11 شماره
صفحات -
تاریخ انتشار 2012